State of Montana IT Server Optimization "Cobra" Workshop Full Final Presentation August 31, 2010 Rick Schoenmann – Project Manager and Financial Lead John Karaba – Lead Technical Consultant raschoen@us.ibm.com jkaraba@us.ibm.com ## State of Montana Cobra Optimization ### **State of Montana sponsors** - Tammy LaVigne Chair, ITMC Virtualization/Consolidation workgroup - Dick Clark Chief Information Officer - Tom Livers DEQ - Stuart Fuller DOA #### **Objectives** - Develop optimization recommendations that: - Improve cost profile - Help reduce complexity through infrastructure simplification, consolidation and virtualization - Optimize and reduce overall energy and space utilization #### **Findings** - \$14 million potential savings over 5 years - Intangible savings - 77% reduction in server energy consumption - NW Energy Incentive Programs - 20x10 Agency Incentives - Timing is Right - 58% of server base will be 4 years or older by end of 2010 - Radical changes in technology create opportunity for capital investments now # Workshop Participants | Agency | Decom | keep as-is | Virtualize | |--------------------------------|-------|------------|------------| | Office of Public Instructions | | | 19 | | Dep-of-Admin-ITSD | 35 | 73 | 671 | | Dep-of-Commerce | 8 | | 41 | | Dep-Env-Quality | 6 | 2 | 38 | | Dep-of-Labor & Industry | | 23 | 79 | | Dep-of-Transportation | 1 | 42 | 107 | | Dep-of-Fish & Wildlife | 3 | 15 | 37 | | Dep-of-Health & Human Services | 14 | 73 | 80 | | Dep-of-Revenue | 2 | 34 | 24 | | Dep-of-Corrections | | 27 | 13 | | MT-JudiciaryCourts | 2 | 39 | 15 | | Dep-of-Natural Resources | _ | 13 | 4 | | Grand Total | 71 | 341 | 1,128 | Currently a number of the State's servers have already been optimized to some degree; however, based on input from each agency, there is an additional 298 servers that can immediately be optimized to an even higher level through virtualization and, where appropriate, centralization.. # Technical Solution Summary for recommended alternative future state Summary is based on the lowest cost alternative | | | | Current State | | | | | |------|-----|--|-------------------|----------|-------|-----|--| | | | | | Physical | | | | | | # | Server Island | Server Type/Model | Servers | Cores | kW | | | | 101 | x86 - Oracle Databases - Physical to VMWare | x86 (Mixed) | 24 | 135 | 20 | | | | 102 | x86 - SQL Databases - Physical to VMWare | x86 (Mixed) | 20 | 104 | 11 | | | x86 | 103 | x86 - Apps/DB/Web/Infra - Physical to Vmware | x86 (Mixed) | 178 | 577 | 94 | | | | 104 | x86 - Physical to Hyper-V | x86 (Mixed) | 23 | 107 | 15 | | | | 105 | x86- Virtual (Refresh 4 yrs or older) | x86 (Mixed) | 13 | 55.6 | 11 | | | | 111 | Unix- Oracle Databases | Unix (mixed) | 20 | 74.9 | 20 | | | Unix | 112 | Unix- Apps/Web | Unix (mixed) | 20 | 48 | 13 | | | | | | _ | 298 | 1,102 | 184 | | | Potential Target State** | | | | | |--------------------------|---------------------|-------|----|--| | Server Type/Model | Physical
Servers | Cores | kW | | | x3850.X5(4)75508C-256GB | 3 | 96 | 6 | | | x3850.X5(4)75508C-256GB | 2 | 64 | 3 | | | x3850.X5(4)75508C-256GB | 3 | 96 | 16 | | | x3650.M3(2)5650HC-144GB | 2 | 24 | 3 | | | x3850.X5(4)75508C-256GB | 1 | 32 | 3 | | | p.750(16)3.3 | 3 | 48 | 7 | | | p.750(16)3.3 | 2 | 32 | 5 | | | | 16 | 392 | 43 | | #### **Current State:** - Complexity due to server sprawl and high HW diversity - Some limited potential to improve utilized compute capacity - Aging Server Environment - Good virtualization on x86 - Older servers not Energy Efficient - Lack of economies of scale outside of main DC - Limited D/R and physical security outside of main DC #### **Target State Benefits:** - Highly virtualized server environment - 95% fewer servers, 65% fewer cores using standard HW and Software building blocks - Improved utilization of compute capacity - 77% reduction in server energy* consumption by using energy efficient server technologies. - ~ \$14M in savings over 5 years # Summary business case of all discrete recommendations | Business Case Summary | У | | | | | |------------------------------|------------|----------------|------------------|----------|---------------------| | Sizing | Current | AltCase1 115:1 | Change | | 5 Year Projection | | Server Type | | | | | | | Total CPU Cores | 1,101.50 | 392 | -64% | 20,000 | | | Used CPU Cores | 1,101.50 | 392 | -64% | | | | Total CPU Sockets | | 50 | -91% | 18,000 | | | #Logical Servers | 401.00 | 398 | -1% | 10,000 | Transition | | #Physical Servers | 297.90 | 16.00 | -95% | 16.000 | | | Ave.Log.Srv RIP | 2,062.3 | 1,319.3 | -36% | 16,000 - | ■ Hardware Maint | | Total RIP Capacity | 826,981.7 | 525,070.0 | -37% | | | | Total RIP Workload | 125,696.7 | 125,696.7 | 0% | 14,000 | ■ Space | | Ave %Utilization | 19% | 22% | 15% | | - Floatric | | | | | | 12,000 | ■ Electric | | Annual Operating Costs (AOC) | | | | | ■ Depreciation | | Staff Cost Code | | | | 10,000 | = Bepresidation | | Software Cost Code | | | | 10,000 | ■ Staff | | Software Cost /CPU | | | | | | | Software Cost /Lsrv | | | | 8,000 | Software | | Software Cost /Psrv | | | | | Purchase | | System Software M&S | 1,074,112 | 315,798 | -71% | 6,000 | ■ Hardware | | Hardware Maint | 505,478 | 45,420 | -91% | | Purchase | | Space | 0 | 0 | 0% | 4,000 | System Software M&S | | Electric | 161,633 | 37,448 | -77% | , l | Software Mas | | Staff | 0 | 0 | 0% | 2,000 | | | Depreciation | 293,333 | 333,910 | 14% | 2,000 | | | Total AOC | 2,034,556 | 732,576 | -64% | | | | est.potential saving /yr | | 1,301,980 | | 0 + | | | One Time Costs (OTC) | | | | С | 1 | | Software Purchase | 0 | 153,792 | | | | | Hardware Purchase | 8,795,750 | 1,001,730 | | | | | | 0 | | | | | | Total OTC | 8,795,750 | 1,155,522 | | | | | | 0 | 0 | | | | | Investment incl.Write-Off | | -7,640,228 | | | | | 5 Year Projection | 40.000.500 | 4.750.700 | | | | | OTC + 5x AOC | 18,968,530 | 4,756,782 | 750/ | | | | 5 yr saving | | 14,211,748 | -75 % | | | # Summary environmental case of all discrete recommendations | Environment: Energy/Space | С | 1 | Change | | | | | |---------------------------|---------|---------|--------|-------|---|---|-----------------| | Total RackU | 751.8 | 96.0 | -87% | 200.0 | | | | | Racks (38/42U utilised) | 19.8 | 3.2 | -84% | | | | | | | | | | 180.0 | | | | | Systems kW | 122.9 | 13.2 | | 160.0 | | | | | Distribution kW | 20.3 | 2.2 | | 100.0 | | | | | Mechanical kW | 41.2 | 27.4 | | 140.0 | | | | | Total kW | 184.4 | 42.7 | -77% | 120.0 | | | | | | | | | 120.0 | | | ■ Systems kW | | Energy Efficiency | | | | 100.0 | | | Distribution kW | | Relative RIPs /Watt | 1.0 | 9.3 | 834% | 80.0 | | | ■ Mechanical kW | | Watts/Workload | 20082.3 | 19169.9 | -5% | 80.0 | | | | | USD Elec Cost/Log.Srv | 403 | 94 | -77% | 60.0 | | | | | _ | | | | 40.0 | | | | | CO2 Emission | | | | 40.0 | | | | | Systems | 592.0 | 63.4 | | 20.0 | | | | | Distribution | 97.7 | 10.5 | | | | | | | Mechanical | 198.3 | 131.9 | | 0.0 | | _ | | | tonnes CO2 / yr | 887.9 | 205.7 | | | С | 1 | | | tonnes CO2 / kRIP | 7.1 | 1.6 | | | | | | | | | | | | | | | # High Level –Recommendation | Area | Recommendation | |---------------------------|--| | Strategy | Make Optimization a central part of you strategy for your IT infrastructure as a means to reduce costs and improve energy efficiency. Centralize as much as possible and standardize on one virtualization platform for each major hardware platform (Unix, x86). | | Server Optimization | Leverage main DC in Helena for centralizing virtualized workloads. Review performance, availability and security requirements for each agency to ensure adequate service levels. For x86 workloads virtualize on VMware, leveraging DRS clusters where possible. For Unix workloads leverage AIX/Linux on Power with micro-partitioning capabilities and Live Partition Mobility as a reasonable alternative to increase reliability and availability. | | Technology Refresh | Initiate an immediate technology refresh initiative to replace older equipment. Where possible retire legacy servers to further reduce power consumption. | | Server Platform Selection | For your x86 environment consider 4-socket x3850 X5 or HX5 2-socket blades to leverage technology advancements based on Nehalem and IBM's X5 For Unix workloads consider virtualizing on AIX/Linux on Power 7 using Advanced Partitioning and Live Partition Mobility | | Storage | Review current storage environment to accommodate a virtualized server infrastructure. Refresh older
storage gear. | | Network | Review network infrastructure for possible reduction of network gear, due to reduction in servers. | | Systems Management | Leverage VMware vCenter and IBM Director to manage your new virtual infrastructure. Consider VMControl to manage virtual server resources on multiple Hypervisors Leverage an integrated service management system to allow for management of both physical and virtual workloads - through a single interface to physical servers, storage and networking - and to ensure fast provisioning, de-provisioning and remediation of issues. | # Next Steps?